
c1~~~~~~~~ ntro1 Symbol

RESEARCH AND DEVELOPMENT TECHNICAL REPORT
ECOM-5597

oo~
RESPONSE CALCULATION S FOR

.~~~~~~ A COMMERCIA L LIGHT - SCATTERING

AEROSOL COUNTER

• By

: R. C. Pinnick
E. B. Stenmark

Atmospheric Scien ces Laborator y
• ‘~US A rmy Electron ics Command: White Sands Missile Range , New Mexico 88002 F’) D C: 

Jul y 1916

• Approved for public release; distribution unlimited.

o_. • .• •. .• . . .I • . • • • • • •I • •S

1~ ]ECOM
UNITED STATES ARMY ELECTRONICS COMMAND - FORT MONMOUTI4, NEW JERSEY 07703

c~~~.



N O T I C E S

Di sclolmera

The findings in thia report are not to be construed as an
official Department of the Army position, unless so deelg.
nated by other authorized documents.

The citation of trade names and names of manufacturers In
this report in not to be construed as official Government
indorsement or approval of commercial products or esrviou
referenced herein.

Dispos it ion

Destroy this report when it is no longer needed. Do not
retu rn it to the originator.



SECURITY CLASS IFICAT IO H OF THIS PAGE (WN.n ‘)~.t. Entered) 
____________________________________

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
_______________________________________________ 

BEFORE_COMPLETIN G_FORM
1. REPORT NUMBER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ N~~

- ~~~~~~~~~~~~~~~~~~~~ ‘ 1 ’~ ECOM- ~ ‘
~~~~~~

. -:: 
___________________________

~~~~~~~~~~~~~ FOR A £0f~?1ERCIAL LIGHT- ~~~~~~~~ O REPORT & PERIOD ~~~VERED 
—

SCATTERING AEROSOL COUNTER V
“V 

p
- 

- ~~~~~~~~~~~ 6. PERF ORMING ORG. REPORT NUMBER

7. AuT9sq~~q.~ 
8. CONTRACT OR GRANT NIJMBER(.)

R. G .fPinnick
~ E. B./Stenmark

9. PE RFORMING ORGANIZATION NAM E AND ADDRESS 10. PROGRAM ELEMENT , PROJE CT , TASK
Atmospheric Sciences Laboratory AREA 6 Wo RK UNIT NUMBERS

White Sands Missile Range , New Mexico 88002 DA Task 815T1103

II. CONTR OLLING OFFICE NAME AND ADDRESS $2. REPORT DATE

US Army Electronics Command July ~~76 
-.

IS. NUMB W~~~~~ A G ES
Fort Monmouth , New Jersey 07703 

-

14. MONITORING AGENCY NAME & ADDRESS(I1 dlf f . , , n t from Controlling Off ice) IS. SECURITY CLASS. (of INS. r.po

UNCLASSIFIED

15.. DECLASSI FICATION/ DOWNGRADING
SCH EDULE

16. DISTRIBUTION STATEMENT (of f b i .  R.port)

Approved for public release; distribution unlimited.

$7. D$STRIBUTION S T A T EMENT (of the abatr.cf entered In Block 20. Sf differen t from Report)

$ 8. SUPPLEMENTARY NOTES

IS. KEY WOROS (Continue on rev ere. eta. If n.ceea~~~ end id.nU~~ by block n~~~b.r)

Ae rosol counter
Particle size distribution
Aerosol measurement

ABSTRACT ~~en~~~ s en ~ ~~~~~~~~~ 
d id.nitfr by block n,enb.r )

~to adequately assess the effect of atmospheric aerosols on electro-opti cal and
high energy laser systems , particulate size distributions must be measured.
Single particle light scattering aerosol particle counters offe r some advantages
for these measurements. This report presents response calculations for a com-
mercially available light-scattering aerosol particle counter (the Particle
Measurement Systems Classical Scattering Aerosol Spectrometer) used by the DoD
comunity for such measurements . The calculations are for spherical particles —

DO 
~~~~

“J, 1473 LofTioN 0? NOV65 IS OBSOLETE

SECURITY CL*5$IflCATION OF ThI S ~~AOC (Nien Del. Enfer&~~

, 7
/ 

(
~)~~ ~_/

_ _ _ _ _ _ _  --
‘V



-. V 
V -. V ~~~ V

SECURITY CLASSIFICATION OF THIS PAOE(lPben 0.1. t.U... ~)

?f)~ Abstract (cont)
(

—~~ and consider the wavelength of the laser source and the geometry of the light-
collecting optics . The results show a strong dependence of the response upon
the particl e refractive index and multivalued response for particles with
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haze are given to illustrate the significance of the results.
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SUMMARY

Mie theory response calculations presented for the Particl e Measurement
Systems Classical Scattering Aerosol Spectrometer show the particl e size
resolution for spherical particles of unknown composition to be less than
advertised for aerosols wi th refractive indexes in the range of those of
atmospheric aerosols. Kowever, for spherical particles of known composi-
tion , these results can be used to group and redefine the particl e size
channels to avoid regions of multivalued response and thereby optimize
the size resolution of the instrument. For particl es of mi xed composit ion ,
only a smal l number of size channel s are justified . Field measurements
on atmospheri c fog and haze suggest that the response calculations apply
to the instrument , although controlled laboratory measurements on uniform
aerosols of known composition and size are required for a definitive con-
fi rmation of the theoretical response calculations shown here.
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INTRODUCTION

Light scattering aerosol particle counters are used for determi nation of
size distribution and concentration of aerosol particles. These devices
work on the principle that as aerosol particles flow through an illuminated
vol ume , light scattered into a particular solid angle by a sinqle particle
is measured photoelectri cally and is used to determi ne particle size by
electronically classifying response pulses according to their magnitude .
Determination of particle size from the response is difficult because of
the complicated dependence of the response on particle size, particle
index of refraction , the lens geometry of the counter optical system, and
for instruments with broadband sources - the phototube spectral sensitiv-
ity . These difficulties have been studied previously El-4] for several
aerosol counters including the commercially available Clime t, Bausch and
Lomb 40-lA , Royco 245, Royco 220, Royco 218, and the Jacobi.

The purpose of this report is to present new light-scattering calculations
for the response of an instrument that has recently become commercially
available: the PartIcle Measurement Systems, Inc., Classical Scattering
Aerosol Spectrometer (CSAS).

COUNTER RESPONSE CALC ULATION

The theoretical response of the CSAS to a particle of a particular size
and refractive index can be expressed as a cross section per particl e
for light scattered into the particular solid angl e of the instrument
collectin q optics . This respcnse is given by

0=22°

~
( 

~~~~
- [11(m , x, e) + i2(m, x , o)] sin 8 d

b 4 °

where ~ is the wavelength of the light and i 1(rn , x , o) and i2(m , x , o )
are the angular intensity functions . The above expression integrated
over all thetas yields the total scattering cross section. The angular
intensity funct ions depend on m, the complex refractive index of the
particle; the particl e size parameter x defined as the ratio of the
particle circumference to the wavelen gth ; and the scatte ring angle 0
as measured from the direction of forward scattering. The light-
col lecting solid angle for the CSAS instrument has ax ial symetry and
is for values of theta from 4° through 22° from the directign of forward
scattering. The wavelen gth is that for a He-Ne laser , 6328A.

It is well known that at a particular scattering angle the scattered
intensity is an oscillatory function of size parameter so that a single

3 

-
~~~~

., .



measurement may not yield a single value of particle size . However , the
hope is that averaging of these intensity functions over a considerable
range of scattering angles w ill damp out the oscillations to give a
single-valued response curve . It is desirable that the response curves
be nearly the same for material s of different refractive index , since in
practice the particle composition may not be known .

Response calculations for the CSAS instrument for water particles wi th
refract ive index 1.33-Oi , for amonium sulfate particles with index
1.5-0, , and for absorbing atmospheric dust particles with indexes 1.50-0.01 1
and 1.5-0 .051 are shown in Figure 1. The results show a strong dependence
of the response upon the particle refractive index and multivalued
response for particles with diameter greater than about 0.8 micrometer.
The calculated response is obviously sensit ive to the particle refractive
index for indexes in the range of those of atmospheric aerosols. The
seriousness of the inultivaluedness is reduced if only a small number of
particle size channels are utilized in the multichanne l analyzer. Of
course , the size resolution of the instrument is reduced accordingly.
Based upon these calculations for the range of particulate refractive
indexes considered here, the instrument size resolution is 0.9 to 1.6
microns for partic les of 1—micron diameter , 3 to 9 microns for particles
of 4-micron diameter , and 7 to 17 microns for particles of 10-micron
diameter. For comparison , the advertised resolution is ±10% for parti-
cles less than 20-micron diameter and ±2 microns for particles larger
than 20-micron diameter.

The manufacturer ’ s calibration for our particular CSAS instrument is
giver, in the table. The corresponding discriminator leve l settings are
indicated by tick marks in Figure 1. There are 15 particle s ize channels
for each “range” of the instrument. Pulse height channel s 1 , 5 , 10, and
15 are labeled between the appropriate tick marks . Changing range 1s~
merely an adj ustment of an amplifier gain and so has the effect of shift-
ing the range of sensitiv ity .

Even If the particulates measured are all of the same known composition ,
there are - on some ranges - discriminator levels set in regions of
niultivalued response . Nevertheless , size distribut ion i nformation for
such a polydispersion of spherical particles can be determined by reducing
the number of channels to avoid these regions. The effects of such a
grouping of the particle size channels on the i nferred particle size
distribution for measurements of atmospheric fog and haze under the
assumption that the particles are water droplets are presented in the
next section.

SIZE DISTRIB UTION MEASUREMENTS OF ATMOSPHERIC
FOG AND HAZE WITH THE CSAS

If spherical particles of known composition are measured with the CSAS ,

size distribution information may be obtained from the theoretical results

4 
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PARTICL E SIZE CHANNEL WIDTH S (Diameter in u rn )

FOR THE CSAS-100,

AS SPECIFIED BY THE MANUFAC11IRER

Instrument Range

Channel 1 2 3 4

2-4 1-2 0.5-1 0.4-0.65

2 4-6 2-3 1-1.5 0.65-0.9

3 6-8 3-4 1.5-2 .0 0.9-1 .15

4 8-10 4-5 2.0-2 .5 1.15-1.4

5 10-12 5-6 2 .5—3.0 1.4— 1 .65

6 12-14 6-7 3.0-3.5 1.65-1.9

7 14-16 7-8 3.5-4 .0 1.9-2.15

8 16-18 8-9 4 .0-4.5 2 .15-2.4

9 18-20 9-10 4.5-5. 0 2 .4-2.65

10 20—22 10—1 1 5.0-5.5 2.65—2.9

11 22—24 11— 12 5. 5—6. 0 2 . 9—3.2

12 24-26 12-13 6.0-6.5 3.2-3 .5

13 26-28 13-14 6.5-7 .0 3.5-3 .8

14 28-30 14-15 7 .0-7 .5 3.8-4.1

15 30-32 15-16 7.5-8.0 4. 1-4.4
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presented here by grouping the particl e size channels to avoid problems
of multival ued response. This channel redefinition for water particles
is shown along with the response curve in Figure 2. The heavy tick
marks indicate the redefined channels. The light and heavy tick marks
together indicate the advertised channel discrimin ator levels and are
identical to those in Figure 1. The channels are redefi ned with less
size resolution than the response curve dictates because in practice
statistical spectra broadening effects result in some channel cross sen-
sitivity . Specifically, even a perfectly monodisperse aerosol results in
a range of pulse heights , and identical particles are not counted enti rely
in one particle size channel . Therefore , setting discriminator levels
near regions of multiva lued response has been avoided. The recalibratio n
reduces the number of channels for each range from 15 to 7. The redefined
channel s are not of equa l width .

The effect of this recalibr ation on size distributions of atmospheric fog
and haze inferred from measurements with the CSAS is shown in Figures 3
through 13. These particulate size distributions are shown to corroborate
our recalibratio n . According to the response calculation , the manufacturer-
advertised calibration may lead to arti ficial maxima in the inferred size
distribution in regions of multival ued response and relative minima be-
tween these regions. In regions of multivalued response , particles with
a relatively large range of sizes produce response pulses in a small
range of pulse heights; whereas, between regions of multivalued response ,
particles with a relatively narrow range of sizes produce response pul ses
in a comparabl e range of pul se heights . Therefore , if the manufacturer ’s
calibration is used , di stortion of the real size distribution of a poly-
dispersion of fog or haze to be inferred from nieasurernents with this in-
strument would be expected . Such art ifacts in the distribtitions would be
most noticeable in the form of relative maxima in regions of multivalued
response (i.e., at 0. 6- 1.3 , 1.6-2. 2 micron radii) and relative minima be-
tween these regions (i.e., at about 1.5 micron radius). These distortions
could be seen easily only if the pulse height discrimi nators are set with
sufficient resol ution.

Exami nation of the manufacture r calibration -derived size distributions in
Figures 3 through 9 show evidence of these artifacts . However, they are
not evident in Range 1 data in Figures 10 and 11 since the pulse height
discriminators on this setting of the instrument are not set sufficientl y
close to resol ve them. The fact that these relative maxima and m inima
occur for a variety of very different size distributions suggests that
they are arti facts resulting from the Mie resonances in our calculation
of the instrument response, since they are not evident in the size distri-
but ions determined from the recalibration. It is noteworthy that the
overall form of size distribution inferred from the manufacturer calibra-
tion and from our redefined calibration is in agreement. Such would not
be the case for absorptive particles.

6



This recalibration scheme has also been appl ied to a similar model of
the CSAS owned by the Night Vision Laboratory which is identical to the
instrument studied here except that the pulse height discriminator levels
are set differently. Some results of the recalibration on size distribu-
tion measurements on atmospheric fog are shown in Figures 12 and 13. The
smooth curves are those obtained with the manufacturer calibration and
the dashed curves wi th our recalibration scheme . Measurements made on
the four range settings are plotted on one figure since they were made
sequentially during relatively stabl e fog conditions. It is suggested
that the plateaus in the manufacturer calibration -inferred size distribu-
tion at approximately 1 and 2 micron radius are a result of the multi-
valuedness in the response curve in Figure 2.

The effect of this recalibration on particulate extinction cross sections
calculated from the size distributio n data for 1 , 4, and 10 micron radia-
tion depends on the size distribution and on the particular range that
the instruments are set on. For a variety of fog and haze measurements ,
however, the -extinction calculated via the redefined calibration versus
the manufacturer calibrati on generally differs by a factor of 50% or less
at 1 micron and by a factor of 2 or less at 4 and 10 microns.

The manufacturer has made two comments bearing on the results presented
here. One is that the classical scattering instrument (CSAS) is not ~~~~~~~~~ 

- -

always produced with the degree of pulse height resolution capable of
the particular models studied here. For these instruments the multi-
valued response problem may be less impor tant , depending on where the
discriminator levels are set. Secondly, the manufacturer says that
since the lasers in the instruments operate in multimode , the phase
shifts through the beam cause smoothing of the resonances in the re-
sponse curves , as the scattering process is no longer described exactly
by Mie theory. The authors do not think this second comment has validit y ,
although controlled laboratory measurements on uniform aerosols of known
composition and size are “equired for a definitive confirmation of the
Flie theory response calculatio ns shown here .

7
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